您好、欢迎来到现金彩票网!
当前位置:迪士尼彩乐园 > 概率 >

高中数学公式

发布时间:2019-06-16 03:10 来源:未知 编辑:admin

  51、解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;

  多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法,还记得什么时候用隔板法?

  53、有关平行垂直的证明主要利用线面关系的转化:线;线;面//面,线;线;

  54、作出二面角的平面角主要方法是什么?(定义法、三垂线法)三垂线法:一定平面,二作垂线,三

  作斜线、二面角的求法主要有:解直角三角形、余弦定理、射影面积法、法向量 56、求点到面的距离的常规方法是什么?(直接法、等体积变换法、法向量法) 57、你记住三垂线定理及其逆定理了吗?

  58、有关球面上两点的球面距离的求法主要是找球心角,常常与经度及纬度联系在一起,你还记得经度

  及纬度的含义吗?(经度是面面角;纬度是线、你还记得简单多面体的欧拉公式吗?(V+F-E=2,其中V为顶点数,E是棱数,F为面数),棱的两种

  60、设直线方程时,一般可设直线的斜率为k,你是否注意到直线垂直于x轴时,斜率k不存在的情况?

  61、定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清)

  63、在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的

  64、直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式.以及各种形式的局限性.(如点

  斜式不适用于斜率不存在的直线、对不重合的两条直线;CyBxAl,有:

  ax,但不要忘记当 a=0时,直线y=kx在两条坐标轴上的截距都是0,也是截距相等.

  68、两直线;CByAx的距离公式d=——————————

  69、直线的方向向量还记得吗?直线的方向向量与直线的斜率有何关系?当直线L的方向向量为m=(x0,y0)时,直线斜率k=———————;当直线斜率为k时,直线的方向向量m=————— 70、到角公式及夹角公式———————,何时用? 71、处理直线与圆的位置关系有两种方法:(1)点到直线)直线方程与圆的方程联立,判别

  73、在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形并且要更多联想到圆的几何性质. 74、在利用圆锥曲线统一定义解题时,你是否注意到定义中的定比的分子分母的顺序?两个定义常常结

  伴而用,有时对我们解题有很大的帮助,有关过焦点弦问题用第二定义可能更为方便。(焦半径公式:椭圆:PF1=———— ;PF2=———— ;双曲线为右焦

  点 );抛物线、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式

  76、椭圆中,a,b,c的关系为————;离心率e=————;准线方程为————;焦点到相应准线距离为———— 双

  曲线中,a,b,c的关系为————;离心率e=————;准线方程为————;焦点到相应准线、通径是抛物线的所有焦点弦中最短的弦.

  78、你知道吗?解析几何中解题关键就是把题目中的几何条件代数化,特别是一些很不起眼的条件,有

  时起着关键的作用:如:点在曲线上、相交、共线、以某线段为直径的圆经过某点、夹角、垂直、平行、中点、角平分线、中点弦问题等。圆和椭圆参数方程不要忘,有时在解决问题时很方便。数形结合是解决解几问题的重要思想方法,要记得画图分析哟!

  79、你注意到了吗?求轨迹与求轨迹方程有区别的。求轨迹方程可别忘了寻求范围呀!

  80、在解决有关线性规划应用问题时,有以下几个步骤:先找约束条件,作出可行域,明确目标函数,

  其中关键就是要搞清目标函数的几何意义,找可行域时要注意把直线方程中的y的系数变为正值。如:求25a-2b4,-33a+b3求a+b的取值范围,但也可以不用线、两向量平行或共线的条件,它们两种形式表示,你还记得吗?注意ba是向量平行的充分不必要

  条件。(定义及坐标表示) 82、向量可以解决有关夹角、距离、平行和垂直等问题,要记住以下公式:a2

  83、利用向量平行或垂直来解决解析几何中的平行和垂直问题可以不用讨论斜率不存在的情况,要注意

  84、向量的运算要和实数运算有区别:如两边不能约去一个向量,向量的乘法不满足结合律,即

  85、你还记得向量基本定理的几何意义吗?它的实质就是平面内的任何向量都可以用平面内任意不共线

  86、一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用,对于一个向

  量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以 一个向量,但不能两边同除以一个向量。 87、 向量的直角坐标运算

  88、导数的几何意义即曲线在该点处的切线的斜率,学会定义的多种变形。 89、几个重要函数的导数:①0

  90、利用导数可以证明或判断函数的单调性,注意当f ’(x)≥0或f ’(x)≤0,带上等号。

  91、f(x0)=0是函数f(x)在x0处取得极值的非充分非必要条件,f(x)在x0处取得极值的充分要条件是

  93、求函数极值的方法:先找定义域,再求导,找出定义域的分界点,根据单调性求出极值。告诉函数

  的极值这一条件,相当于给出了两个条件:①函数在此点导数值为零,②函数在此点的值为定值。 九、概率统计

  94、有关某一事件概率的求法:把所求的事件转化为等可能事件的概率(常常采用排列组合的知识),转

  化为若干个互斥事件中有一个发生的概率,利用对立事件的概率,转化为相互独立事件同时发生的概率,看作某一事件在n次实验中恰有k次发生的概率,但要注意公式的使用条件。 (1)若事件A、B为互斥事件,则P(A+B)=P(A)+P(B) (2)若事件A、B为相互独立事件,则P(A·B)=P(A)·P(B) (3)若事件A、B为对立事件,则P(A)+P(B)=1一般地,

  (4)如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事恰好发生K次的概

  95、抽样方法主要有:简单随机抽样(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;系统抽样,常常用于总体个数较多时,它的主要特征就是均衡成若干部分,

  每一部分只取一个;分层抽样,主要特征分层按比例抽样,主要使用于总体中有明显差异。它们的共同特征是每个个体被抽到的概率相等。

  96、用总体估计样本的方法就是把样本的频率作为总体的概率。 十、解题方法和技巧

  97、总体应试策略:先易后难,一般先作选择题,再作填空题,最后作大题,选择题力保速度和准确度

  为后面大题节约出时间,但准确度是前提,对于填空题,看上去没有思路或计算太复杂可以放弃,对于大题,尽可能不留空白,把题目中的条件转化代数都有可能得分,在考试中学会放弃,摆脱一个题目无休止的纠缠,给自己营造一个良好的心理环境,这是考试成功的重要保证。 98、解答选择题的特殊方法是什么?

  (顺推法,估算法,特例法,特征分析法,直观选择法,逆推验证法、数形结合法等等) 99、 答填空题时应注意什么?(特殊化,图解,等价变形) 100、解答应用型问题时,最基本要求是什么?

  101、 审题、找准题目中的关键词,设未知数、列出函数关系式、代入初始条件、注明单位、作答学会

  跳步得分技巧,第一问不会,第二问也可以作,用到第一问就直接用第一问的结论即可,要学会用“由已知得”“由题意得”“由平面几何知识得”等语言来连接,一旦你想来了,可在后面写上“补证”即可。

  数学考试时,有许多地方都要考生特别注意.在考试中掌握好各种做题技巧,可以帮助各位在最后关头鲤鱼跃龙门。 考试注意:

  在考试中,要充分利用考前5分钟的时间。考卷发下后,可浏览题目。当准备工作(填写姓名、考号等)完成后,可以翻到后面的解答题,通读一遍,做到心中有数。

  考试题目分为易、中、难三种,它们的分值比约为3:5:2。考试中大家要根据自身状况分别对待。

  ⑴做容易题时,要争取一次做完,不要中间拉空。这类题要100%的拿分。 ⑵做中等题时,要静下心来,尽量保证拿分,起码有80%的完成度。 ⑶做难题时,大家通常会感觉无从下手。这时要做到: ①多读题目,仔细审题。 ②在草稿上简单感觉一下。

  ③不要轻易放弃。许多同学一看是难题、大题,不多做考虑,就彻底投降。解答题多为小步设问,许多小问题同学们都是可以解决的,因此,每一个题、每一个问,考生都要认线.时间分配要合理

  ⑵做题时要边做边检查,充分保证每一题的正确性。不要抱着“等做完后再重新检查”的念头而在后面浪费太多的时间用于检查。

http://attack11.net/gailv/552.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有